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Abstract. Suppose K ⊆ GL(n, C) is a closed subgroup which acts on the complete
flag variety with finitely many orbits. When K is a Borel subgroup, these orbits are
Schubert cells, whose study leads to Schubert polynomials and many connections to
type A Coxeter combinatorics. When K is O(n, C) or Sp(n, C), the orbits are indexed
by some involutions in the symmetric group. Wyser and Yong described polynomials
representing the cohomology classes of the orbit closures, and we investigate parallels
for these “involution Schubert polynomials” of classical combinatorics surrounding
type A Schubert polynomials. We show that their stable versions are Schur-P-positive,
and obtain as a byproduct a new Littlewood-Richardson rule for Schur P-functions.

A key tool is an analogue of weak Bruhat order on involutions introduced by Richard-
son and Springer. This order can be defined for any Coxeter group W, and its labelled
maximal chains correspond to reduced words for distinguished elements of W which
we call atoms. In type A we classify all atoms, generalizing work of Can, Joyce, and
Wyser, and give a connection to the Chinese monoid of Cassaigne et al. We give a dif-
ferent description of some atoms in general finite W in terms of strong Bruhat order.

Résumé. Soit K ⊆ GL(n, C) un sous-groupe fermé qui agit sur la variété de dra-
peaux complets avec un nombre fini d’orbites. Quand K est un sous-groupe de Borel,
ces orbites sont des cellules de Schubert, dont l’étude mène aux polynômes de Schu-
bert et de nombreuses connexions aux combinatoires de Coxeter de type A. Quand
K est O(n, C) ou Sp(n, C), les orbites sont indexées par des involutions du groupe
symétrique. Wyser et Yong ont décrit des polynômes représentant les classes de coho-
mologie des clôtures de ces orbites, et nous étudions des parallèles pour ces polynômes
de la combinatoire classique des polynômes de Schubert de type A. Nous montrons
que les versions stables de ces polynômes sont Schur-P-positives, et nous obtenons par
ce biais une nouvelle règle de Littlewood-Richardson pour les P-fonctions de Schur.

Un outil clé est l’analogue de l’ordre faible de Bruhat sur les involutions introduit par
Richardson et Springer. Cet ordre peut être défini pour tout groupe de Coxeter W, et
ses chaînes maximalles étiquetées correspondent aux mots réduits pour des éléments
spéciaux de W que nous appelons atomes. Pour le type A, nous classifions tous les
atomes, généralisant les travaux de Can, Joyce et Wyser, et donnant une connexion au
monoïde chinois de Cassaigne et al. Nous donnons une des description différente de
certains atomes pour un W fini général en termes d’un ordre fort de Bruhat.
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1 Introduction

Let (W, S) be a Coxeter system, and ∗ an involutive graph automorphism of the associ-
ated Coxeter diagram. We will call (W, S, ∗) a twisted Coxeter system. The automorphism
∗ induces an involution ∗ : W → W, whose action we denote x 7→ x∗. The set of twisted
involutions of (W, S, ∗) is I∗(W) := {x ∈ W : x−1 = x∗}. When ∗ is the identity we will
simply write I(W).

When W is the Weyl group of a connected reductive linear algebraic group G with
Borel subgroup B and maximal torus T, twisted involutions arise in the following ge-
ometric setting studied by Richardson and Springer [20]. Suppose θ : G → G is an
involutive automorphism stabilizing T and B (hence acting on W), and let K ⊆ G be the
symmetric subgroup of θ-fixed points. Then K acts on the flag variety G/B with finitely
many orbits, and Richardson and Springer defined a map from the set of K-orbits on
G/B into the set of twisted involutions {x ∈W : x−1 = θ(x)}.

The study of the Schubert varieties in G/B—that is, the B-orbit closures, indexed by
W—has been a rich source of problems in algebraic combinatorics. For instance, Bruhat
order, symmetric functions, Schubert polynomials, and Kazhdan-Lusztig polynomials
are all intimately related to geometric questions about Schubert varieties. The machinery
of the previous paragraph then suggests a program of investigating analogues of classical
Schubert combinatorics for twisted Coxeter systems of Weyl groups in connection with
the relevant geometry of K-orbits on G/B.

Alternatively, one can simply approach the study of twisted involutions as a problem
in Coxeter theory, as in [16]. Richardson and Springer introduced the (twisted) involution
weak order on I∗(W), which resembles weak order on W. The labelled maximal chains
in an interval [x, y] of this poset, which we call involution words, behave in many ways
like reduced words for a Coxeter group element. In fact, these involution words are
in bijection with reduced words for a certain subset of W associated to [x, y], the set of
atoms of [x, y].

We will describe results coming from both directions. In Section 2, we give some
background on twisted involutions in a general Coxeter group, and outline our results
on atoms. More specifically, we generalize work in [6] to classify all atoms in type A,
and note an unexpected connection to the Chinese monoid of [7]. We also give a new and
different characterization of atoms for [1, x] in any finite W in terms of strong Bruhat
order on W, and conjecture its correctness for all intervals in all W.

Section 3 focuses on questions arising from the geometry of K-orbits on the type A
flag variety where K is an orthogonal or symplectic group. Analogues of Schubert poly-
nomials, which represent the cohomology classes of these K-orbit closures, were found
in [3] and [22]. We give some new identities for these involution Schubert polynomials. In
particular, we find an analogue of Lascoux and Schützenberger’s transition formula for
ordinary Schubert polynomials [18].
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In Section 4 we consider enumerative problems for involution words. We prove using
the aforementioned transition formula that (in the case K = O(n)) stable involution
Schubert polynomials are not only Schur-positive, but Schur-P-positive. Their Schur-P
expansions yield enumerations of involution words in terms of shifted standard Young
tableaux, which can be proven bijectively using an insertion algorithm introduced in [14].
These connections lead to a new proof of a conjecture of Stanley on Schur-P-positivity
of skew Schur functions (proven by other means in [1] and [8]), and a new Littlewood-
Richardson rule for Schur-P-functions.

2 Involution words and atoms

Let (W, S, ∗) be a twisted Coxeter system, with length function `. Given s ∈ S and
w ∈W, define

w ◦ s =

{
ws if `(w) < `(ws)
w if `(w) > `(ws)

The operation ◦ extends to an associative binary operation on W; up to a sign convention,
this is multiplication in the 0-Hecke algebra of W.

Definition 1. Let ◦̂ ∗ be the binary operation on W defined by x ◦̂ ∗w = (w∗)−1 ◦ x ◦ w.
The (twisted involution) weak order on I∗(W) is the order <∗I defined by the cover relations
x l∗I x ◦̂ ∗s if x < x ◦̂ ∗s.

Note that ◦̂ ∗ is not associative. The following simple formula is useful.

Proposition 2. For x ∈ I∗(W) and s ∈ S,

x ◦̂ ∗s =


x if xs < x
xs if x < xs = s∗x
s∗xs if x < xs 6= s∗x

.

Definition 3. Take x, y ∈ I∗(W). An involution word of y with respect to x is a minimal-
length sequence (s1, . . . , sp) of simple generators such that

y = (· · · ((x ◦̂ ∗s1) ◦̂ ∗s2) ◦̂ ∗ · · · ) ◦̂ ∗sp.

Let R̂∗(x, y) denote the set of involution words of y with respect to x.

An involution word is thus a labelling of a maximal chain in the involution weak
order on [x, y] (but note that distinct involution words can correspond to the same max-
imal chain, as in Example 6 below). Involution weak order and involution words were
introduced in [20], where the latter are called “admissible sequences”. In the usual weak
order on W, the interval [v, w] is isomorphic to [1, v−1w], but no such statement holds in
the involution setting, so the study of arbitrary intervals becomes interesting.



4 Zachary Hamaker, Eric Marberg and Brendan Pawlowski

Definition 4. The sets of Hecke atoms and atoms, respectively, of y relative to x are

B∗(x, y) = {w ∈W : x ◦̂ ∗w = y} and A∗(x, y) = {w ∈ B∗(x, y) : `(w) is minimal}.

Write R(w) for the set of reduced words of w ∈W.

Proposition 5. R̂(x, y) =
⋃

w∈A(x,y)R(w) for any x, y ∈ I∗(W).

Example 6. With W = S4 and ∗ = id,

R∗(1, (1 3)) = {(s1, s2), (s2, s1)} so A∗(1, (1 3)) = {2314, 3124},
R∗((1 2)(3 4), (1 4)(2 3)) = {(s2, s1), (s2, s3)} so A∗((1 2)(3 4), (1 4)(2 3)) = {3124, 1342}.

The second example shows that distinct involution words can correspond to the same
saturated chain in involution weak order.

2.1 Bruhat characterization of atoms

Write ˆ̀∗(y) for the common length of the elements of R̂∗(1, y), which is non-empty by
Proposition 5. More generally, elements of R̂∗(x, y) have length ˆ̀∗(y)− ˆ̀∗(x).

For w ∈ A∗(x, y), Proposition 2 and the subword criterion for Bruhat order imply
that y = (w∗)−1xw′ where w′ ≤ w and the product is length-additive, so that w∗y ≤ xw.
We conjecture that this condition in fact characterizes atoms among w ∈ W with the
correct length.

Conjecture 7. For any x, y ∈ I∗(W),

A∗(x, y) = {w ∈W : w∗y ≤ xw and `(w) = ˆ̀∗(y)− ˆ̀∗(x)}.

When W is finite and either x or y has a special form, we can prove Conjecture 7 by
downwards induction on length. In particular, the conjecture holds when x = 1, as well
as in the important special case where W = S2n and x = (1 2)(3 4) · · · (2n−1 2n).

Theorem 8 ([12]). Suppose W is finite with longest element w0, and x, y ∈ I∗(W) are such
that `(x) = ˆ̀∗(x) or `(w0)− `(y) = ˆ̀∗(w0)− ˆ̀∗(y). Then Conjecture 7 holds.

2.2 Atoms in type A

We now restrict to the case W = Sn and ∗ = id, where we can give a complete charac-
terization of atoms in a rather different way, extending the approach initiated in [4] and
[6]. Define the cycle set and extended cycle set of y ∈ I(Sn) by

Cyc(y) = {(a, b) : 1 ≤ a ≤ b ≤ n and y(a) = b}
exCyc(y) = Cyc(y) ∪ {(a, b) : 1 ≤ b < a ≤ n and y(a) = a, y(b) = b}.

First we note a characterization of the sets A(1, y) = Aid(1, y) due to Can, Joyce, and
Wyser.
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Theorem 9. [6], [12, Corollary 5.13] For y ∈ I(Sn), we have w ∈ A(1, y) if and only if:

(a) Whenever (a, b) ∈ Cyc(y) it holds that w(b) ≤ w(a), and there is no a < t < b with
w(b) < w(t) < w(a).

(b) Whenever (a, b), (a′, b′) ∈ Cyc(y) satisfy a < a′ and b < b′, it holds that w(b) ≤ w(a) <
w(b′) ≤ w(a′).

It is possible to give a similarly explicit description of A(x, y) for any x, y ∈ I(Sn)
(see [12, Theorem 5.11]), but the inequalities and possible interactions between pairs of
cycles become more complicated and less memorable. To capture these interactions in a
more compact way we introduce the following bookkeeping device.

Definition 10. A colored involution on [2n] = {1, 2, . . . , 2n} is a partial matching of [2n]
whose vertices are colored by n colors, such that (a) each color appears exactly twice,
and (b) if i and j are connected, they have the same color. Let CI2n denote the set of
colored involutions on [2n].

To an ordered pair ((a1, a2), (a3, a4)) of pairs of integers, we associate a colored in-
volution σ((a1, a2), (a3, a4)) ∈ CI4 as follows. List the integers a1, a2, a3, a4 in weakly
increasing order, identifying them with 1, 2, 3, 4; if ai = aj with i < j, view ai as coming
before aj in the list. Color a1, a2 black, and a3, a4 white. Connect the pair a1, a2 if a1 < a2,
and likewise for a3, a4.

A simple transposition (i i+1) acts on α ∈ CI2n by (a) swapping vertices i and i + 1
if they have different colors, or (b) changing whether or not i and i + 1 are connected if
they have the same color. Let π : CI2n → I(S2n) be the map which forgets colors, and
let ≺ be the weakest partial order on CI2n such that α ≺ αs whenever π(α) <I π(αs).

Example 11.

σ((1, 5), (5, 2)) = ≺ σ((1, 5), (5, 2))s3 =

σ((5, 1), (5, 2)) = 6≺ σ((5, 1), (5, 2))s3 =

σ((6, 1), (5, 2)) = ≺ σ((6, 1), (5, 2))s2 =

Given (a, b), (c, d) ∈ [n]× [n] and w ∈ Sn, write (a, b) ∩ (c, d) for {a, b} ∩ {c, d}, and
w(a, b) for (w(a), w(b)). We can now state our characterization of atoms in type A.

Theorem 12 ([12], Theorem 5.10). For x, y ∈ I(Sn), we have w ∈ A(x, y) if and only if:

(a) wγ ∈ exCyc(x) for all γ ∈ Cyc(y);

(b) σ(wγ, wγ′) � σ(γ, γ′) for all γ, γ′ ∈ Cyc(y) with γ ∩ γ′ 6= 0.

The fact that this theorem requires only “local” checks—that is, conditions on pairs
of cycles γ, γ′ which depend only on the relative orders of the integers in γ, γ′ and
wγ, wγ′—opens the door to its use in computer proofs, as for Theorem 24.
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2.3 Type A atoms and the Chinese monoid

Having fixed n, define wFPF = (1 2)(3 4) · · · (2n−1 2n) in I(S2n), and

IFPF(S2n) = {z ∈ I(S2n) : z has no fixed points} = {z ∈ I(S2n) : z ≥I wFPF}.

In this section we adopt some simpler notation, writing A(z) for A(1, z) and R(z) for
R(1, z), and likewise AFPF(z) for A(wFPF, z) and RFPF(z) for R(wFPF, z). Recall also the
notion of Hecke atoms B(z) from Definition 4.

Definition 13 ([7]). The Chinese monoid is the free monoid on N modulo the relations
bca ≡ cab ≡ cba where a < b < c, applied to any three consecutive letters in a word.

Theorem 14 ([12], Theorem 6.4). The Chinese monoid equivalence classes in Sn are exactly the
sets B(z)−1 = {w−1 : w ∈ B(z)} for z ∈ I(Sn).

By focusing on the length-preserving relation bca ≡ cab one obtains an alternate de-
scription of (inverse) atoms in type A. Equip A(z)−1 with a poset structure having a
cover relation w l w′ whenever w′ is obtained from w by replacing a consecutive subse-
quence cab by bca when a < b < c.

Theorem 15. The poset A(z)−1 is graded and has unique minimal and maximal elements.
Moreover, if Cyc(w) = {(a1, b1), . . . , (ak, bk)} where a1 < · · · < ak, then the minimal element
of A(z)−1 has one-line notation b1a1 · · · bkak with ai omitted when ai = bi.

Recall that for a fixed w ∈ Sn, the reduced words R(w) form a single equivalence
class under the Coxeter relations sisj = sjsi if |i− j| > 1 and sisi+1si = si+1sisi+1. Theo-
rem 15 implies an analogous result for involution words, proven independently by Hu
and Zhang [15]; we also obtain such a result for fixed-point-free involution words via a
fixed-point-free version of Theorem 15.

Theorem 16 ([12], Theorem 7.1; [15]). For a fixed z ∈ I(Sn), the involution words R̂(z) form
a single equivalence class under the Coxeter relations together with the relation (si, sj, . . .) ∼
(sj, si, . . .) for any i, j ∈ [n− 1].

Theorem 17 ([12], Theorem 7.2). For a fixed z ∈ IFPF(S2n), the involution words R̂FPF(z)
form a single equivalence class under the Coxeter relations together with the relation (s2i, s2i−1, . . .)
∼ (s2i, s2i+1, . . .) for any i ∈ [n− 1].

3 Involution Schubert calculus

In this section it will be helpful to write IK for I(Sn) or IFPF(Sn) depending on whether
K = O(n, C) or K = Sp(n, C), and likewise AK(z), R̂K(z), etc. In any statement about
Sp(n) it should be assumed that n is even. Let Fl(n) be the variety of complete flags
in Cn, with its right action of GL(n, C). The first of the following claims is well-known,
while the second is proven in [20]:
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• The orbits of the Borel group of upper triangular matrices on Fl(n) are in bijection
with Sn.

• For K = O(n) or Sp(n), the K-orbits on Fl(n) are in bijection with IK.

These orbits can be described explicitly as follows. For w ∈ Sn, let rkw(i, j) = #{p ∈
[i] : w(p) ∈ [j]}. The rank of a bilinear form α : V ×W → C is the rank of the matrix
[α(v, w)] where v and w run over bases for V and W. Let prjj : Cn → Cj be projection
onto the first j coordinates, and fix a non-degenerate bilinear form αK on Cn which is
symmetric if K = O(n) and skew-symmetric if K = Sp(n) . Now for w ∈ Sn and z ∈ IK,
define

X̊w = {F• ∈ Fl(n) : rank prjj |Fi = rkw(i, j) for all i, j ∈ [n]}

Y̊K
z = {F• ∈ Fl(n) : rank αK|Fi×Fj = rkz(i, j) for all i, j ∈ [n]}.

The sets X̊w are the classical type A Schubert cells, their closures Xw being Schubert vari-
eties, and it is a basic fact that they are the B-orbits on Fl(n). It is shown in [21] that the
sets Y̊K

z are indeed the orbits of K = O(n) or Sp(n) as z ranges over IK. Let YK
z be the

Zariski closure of Y̊K
z .

For a subvariety X ⊆ Fl(n), let [X] ∈ H∗(Fl(n), Z) denote the cohomology class
Poincaré dual to X. Let κ(z) denote the number of 2-cycles of an involution z.

Theorem 18 ([3]). For z ∈ IK,

[YK
z ] =

{
2κ(z) ∑w∈AK(z)[Xw] if K = O(n)

∑w∈AK(z)[Xw] if K = Sp(n)

The cohomology ring H∗(Fl(n), Z) is isomorphic to a quotient of Z[x1, . . . , xn], and
under this isomorphism the Schubert polynomial Sw is a representative for [Xw]. See [19,
Ch. 3] for an introduction to Schubert varieties and polynomials. In light of Theorem 18,
we make the following definition.

Definition 19. The involution Schubert polynomial (for the group K) associated to z ∈ IK
is ŜK

z = ∑w∈AK(z)Sw.

Thus 2κ(z)Ŝ
O(n)
z and Ŝ

Sp(n)
z are polynomial representatives for [YO(n)

z ] and [YSp(n)
z ]

respectively, by Theorem 18. Wyser and Yong [22] construct polynomial representatives
for the classes [YK

z ] in a different way, using divided difference operators; the arguments
in [22, §3.1] imply that their polynomials agree with ours, or see [10, §3.4].
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3.1 Identities for involution Schubert polynomials

For various special classes of permutations w ∈ Sn, the classical Schubert polynomials
have particularly nice forms. For instance, if w is dominant (avoids 132), then Sw is a
monomial; if w is Grassmannian (has at most one descent), then Sw is a Schur polyno-
mial. In this section we give involution analogues of these two facts.

Definition 20. An involution is weakly dominant if its disjoint cycle decomposition has
the form (1 a1)(2 a2) · · · (k ak), where a1, . . . , ak > k.

If z ∈ I(Sn) is weakly dominant, let r(z) ∈ Sn be the permutation with one-line
notation (a1−k) · · · (ak−k)b1 · · · bn−k, where {b1 < · · · < bn−k} = [n] \ {a1 − k, . . . , ak −
k}. Let gk = (1 k)(2 k+1) · · · (k 2k) ∈ Sn.

Theorem 21 ([10], Theorem 3.27). If z ∈ IK is weakly dominant with k 2-cycles, then

ŜK
z = ŜK

gk
Sr(z)(x1, . . . , xk, 0, 0, . . . ;−xk+1, . . . ,−xn, 0, 0, . . .), (3.1)

where Sw(x1, x2, . . . ; y1, y2, . . .) is the double Schubert polynomial of w.

When z = wn is the longest element of Sn, Theorem 21 recovers the following product
formulas of Wyser and Yong [22] (see also the more general product formulas in [5]):

ŜK
wn =

{
x1 · · · xn ∏1≤i<j≤n(xi + xj) if K = O(n)

∏1≤i<j≤n(xi + xj) if K = Sp(n)

Definition 22. An I-Grassmannian involution is one with disjoint cycle decomposition
z = (φ1 m+1)(φ2 m+2) · · · (φk m+k) where φ1 < · · · < φk < m. We write Ŝ[φ1, . . . , φk; m]

for ŜO(n)
z .

Theorem 23. Let A[φ1, . . . , φk; m] be the 2d k
2e × 2d k

2e skew-symmetric matrix with (i, j) en-
try Ŝ[φi, φj; m] for i < j, or Ŝ[φi; m] if j = k + 1. Then Ŝ[φ1, . . . , φk; m] is the Pfaffian of
A[φ1, . . . , φk; m].

One can view Theorem 23 as an analogue of the Jacobi-Trudi formula, which ex-
presses the Schubert polynomial of a Grassmannian permutation as the determinant of
a matrix filled with Schubert polynomials for single-row Grassmannians. There is a
similar but slightly more complicated notion of “I-Grassmannian” for fixed-point-free
involutions, and a corresponding Pfaffian formula.

3.2 Transition formulas and Bruhat order on involutions

Recall that v ≤ w in strong Bruhat order if and only if some (every) reduced word
for w has a subword in R(v). An involution version of this statement holds; namely,
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involutions y and z satisfy y ≤ z if and only if some (every) involution word for z has
a subword in R̂(y). Equivalently, y ≤ z if and only if for some (every) w ∈ A(z), there
exists v ∈ A(y) such that v ≤ w.

Theorem 24 ([11], Theorem 3.20). Fix y ∈ I(Sn) and i < j. Then there is at most one
z ∈ I(Sn) such that for some w ∈ A(y), we have w l w(i j) and w(i j) ∈ A(z).

This gives a natural way of labelling the cover relations in I(Sn) equipped with
Bruhat order: if there exists w ∈ A(y) such that w(i j) ∈ A(z) with i < j, define τij(y) =
z, and otherwise set τij(y) = y. Note that it can happen that τij(z) = τi′ j′(z) but (i, j) 6=
(i′, j′). Incitti [17] proved that the restriction of Bruhat order to I(Sn) is still graded and
also labelled the cover relations by pairs of integers, albeit in a slightly different way.

Example 25. Let y = (1 2)(3 4) and y′ = (1 3). One checks that w = 2143 ∈ A(y) and
w′ = 3124 ∈ A(y′), and that A((1 4)) contains w(1 4) = 3142, w′(1 4) = 4123, and
w(1 3) = 4123. Thus, τ14(y) = τ14(y′) = τ13(y) = (1 4).

On the other hand, w′ l w′(2, 3) = 3214, and the latter is not an atom of any involu-
tion, so we set τ23(y′) = y′. The first equality above presents an obstacle to defining a
reasonable inverse of τij.

Proof sketch of Theorem 24. Suppose that there is a counterexample to the theorem: w, w′ ∈
A(y) such that w l w(i j), w′ l w′(i j), and w(i j) ∈ A(z), w′(i j) ∈ A(z′) with z 6= z′.
Incitti’s classification of involution Bruhat covers implies that that there is a set E ⊆ [n]
with |E| ≤ 8 such that y, z, and z′ stabilize E and agree on [n] \ E. The key point is
now that the “local” nature of Theorem 12 classifying atoms immediately implies that
the atom relationships in the counterexample still hold upon restricting w, w′, y, z, z′ to
E and standardizing. One thereby deduces that any counterexample would lead to a
counterexample in S8, and a computer check rules out the latter.

The restriction of Bruhat order to IFPF(Sn) is simpler to understand: if z covers y,
then z = (i j)y(i j) for some i < j (see [11, §4.1]). We therefore define τK

ij (y) to be what
we have called τij(y) if K = O(n), and (i j)y(i j) if K = Sp(n).

Given y ∈ IK and r ∈N, define sets

Φ̂+
K (y, r) = {τK

rj (y) : r < j and τK
rj (y) > y}

Φ̂−K (y, r) = {τK
ir (y) : 1 ≤ i < r and τK

ir (y) > y}.
In this definition we identify a permutation y ∈ Sn with the permutation of N agreeing
with y on [n] and fixing all p > n, so j need not be in [n]. The next theorem is an
analogue of Lascoux and Schützenberger’s transition formula for Schubert polynomials
[18]:

Theorem 26 ([11], Theorems 3.28 and 4.17). For any y ∈ IK and q = y(p),

2−δpq(xp + xq)Ŝ
K
y = ∑

z∈Φ̂−K (y,p)

ŜK
z − ∑

z∈Φ̂+
K (y,q)

ŜK
z .
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4 Involution Stanley symmetric functions and enumera-
tions of involution words

The Stanley symmetric function or stable Schubert polynomial of w ∈ Sn is Fw := lim
m→∞

S1m×w,

where 1m × w = 12 · · ·m(w(1)+m) · · · (w(n)+m). It follows from [2] that |R(w)| is
the coefficient of x1x2 · · · x`(w) in Fw, so from the Schur expansion Fw = ∑λ cλ,wsλ, one
deduces that |R(w)| = ∑λ cλ,w f λ, where f λ is the number of standard tableaux of shape
λ. The Edelman-Greene insertion algorithm [9] interprets the coefficients cλ,w bijectively;
in particular, they are nonnegative integers.

Definition 27. The involution Stanley symmetric function (for the group K) of z ∈ IK is
F̂K

z = limm→∞ ŜK
1m×z = ∑w∈AK(z) Fw.

Let δk be the staircase partition (k− 1, k− 2, . . . , 1). Theorems 28 and 31 are stabiliza-
tions of the identities in Section 3.1.

Theorem 28 ([10], Theorem 3.44). Suppose z ∈ IK is weakly dominant with k 2-cycles, and
that the Rothe diagram of r(z) is equivalent via row and column permutations to a skew shape
δm \ µ. Then F̂K

z = F̂K
gk

sδm\µ.

Corollary 29. Let p = dn+1
2 e and q = bn+1

2 c. Then F̂O(n)
wn = sδp sδq and F̂Sp(n)

wn = s2
δn

.

A partition λ is strict if λi > λi+1 for all i < `(λ). The shifted Young diagram of a strict
partition λ is {(i, j) : 1 ≤ i ≤ `(λ), i ≤ j < i + λi}. A filling of a shifted shape λ ` `
on the alphabet {1′ < 1 < 2′ < 2 < · · · } is a marked shifted semistandard tableau if it is
weakly increasing down columns and across rows, no row (resp. column) contains the
same primed (resp. unprimed) entry twice, and no primed entry appears on the main
diagonal. Such a tableau is standard if its entries are 1, 2, . . . , ` (potentially with primes).

Definition 30. The Schur P-function of shifted shape λ is Pλ = ∑T xT, where T runs over
marked shifted semistandard tableaux of shape λ.

For simplicity we state the next theorem for the case K = O(n), but an appropriate
analogue holds when K = Sp(n) as well.

Theorem 31 ([13]). Let z = (φ1 m+1) · · · (φk m+k) be an I-Grassmannian involution. Asso-
ciate to z the strict partition λ with λi = m− φi + 1. Then F̂O(n)

z = Pλ.

Theorem 32. For z ∈ IK, the involution Stanley symmetric function F̂K
z is Schur-P-positive.

Proof sketch. By stabilizing Theorem 26 and making judicious choices of p, q, one can
construct a tree of involutions with root z, leaves some I-Grassmannian involutions, and
such that if y is a non-leaf vertex then F̂K

y = ∑y′ F̂K
y′ where y′ runs over the children
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of y. This is an analogue of Lascoux and Schützenberger’s maximal transition tree; it
immediately implies the theorem, and provides an effective algorithm for computing the
Schur-P expansion of F̂K

z . (Alternatively, see Theorem 34 below.)

Schur P-functions appear in several representation-theoretic contexts and in type B
and C Schubert calculus, but as yet we have no clear connection between these appear-
ances and our results.

Given any shifted shapes λ and ν, it is easy using Theorem 31 to find an involution
y such that F̂y := F̂O(n)

y = PλPν. Applying the algorithm described in the proof sketch of
Theorem 32 to F̂y then yields a new Littlewood-Richardson rule for Schur P-functions.

Another consequence of Theorem 32 is a new proof of a conjecture of Stanley, proven
using different techniques by Ardila and Serrano [1] and by DeWitt [8].

Theorem 33. For any µ ⊆ δm, the skew Schur function sδm\µ is Schur-P-positive.

Proof sketch. By [10, Theorem 3.1], any 321-avoiding z ∈ I(Sn) has a unique atom w, and
w is again 321-avoiding. Then F̂z = Fw is a skew Schur function by [19, Ch. 2], and one
can explicitly construct z so that Fw = sδm\µ. Now apply Theorem 32.

Let gλ denote the number of marked shifted standard tableaux of shape λ. Writing
F̂z = ∑λ dλ,zPλ where dλ,z ≥ 0 by Theorem 32, we then have |R̂(z)| = ∑λ dλ,zgλ.

Theorem 34. Fix z ∈ I(Sn). There is a finite set T of (unmarked) shifted semistandard tableaux
such that the shifted Hecke insertion of [14] restricts to a bijection

R̂(z)→ {(P, Q) : P ∈ T , and Q is marked shifted standard of the same shape as P}.

Moreover, dλ,z = #{P ∈ T : P has shape λ}.

Theorem 34 also gives a second, purely combinatorial proof of Theorem 32 in the
case K = O(n). We know no analogous insertion algorithm for the case K = Sp(n).
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